Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action

نویسندگان

  • Franck E. Dayan
  • Susan B. Watson
چکیده

Plant cells possess a number of membrane bound organelles that play important roles in compartmentalizing a large number of biochemical pathways and physiological functions that have potentially harmful intermediates or by-products. The plasma membrane is particularly important as it holds the entire cellular structure whole and is at the interface between the cell and its environment. Consequently, breaches in the integrity of the lipid bilayer, often via reactive oxygen species (ROS)-induced stress membrane peroxidation, result in uncontrolled electrolyte leakage and in cell death. A simple 3-step bioassay was developed to identify compounds that cause electrolyte leakage and to differentiate light-dependent mechanisms of action from those that work in darkness. Herbicides representative of all known modes of action (as well as several natural phytotoxins) were selected to survey their effects on membrane integrity of cucumber cotyledon discs. The most active compounds were those that are known to generate ROS such as the electron diverters and uncouplers (paraquat and dinoterb) and those that either were photodynamic (cercosporin) or caused the accumulation of photodynamic products (acifluorfen-methyl and sulfentrazone). Other active compounds targeted lipids (diclofop-methyl, triclosan and pelargonic acid) or formed pores in the plasma membrane (syringomycin). Herbicides that inhibit amino acid, protein, nucleotide, cell wall or microtubule synthesis did not have any effect. Therefore, it was concluded that the plant plasma membrane is a good biomarker to help identify certain herbicide modes of action and their dependence on light for bioactivity. Published by Elsevier Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action

Sarmentine, 1-(1-pyrrolidinyl)-(2E,4E)-2,4-decadien-1-one, is a natural amide isolated from the fruits of Piper species. The compound has a number of interesting biological properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial studies highlighted a similarity in response between plants treated with sarmentine and herbicidal soaps such as pelargonic acid (non...

متن کامل

The Effect of Lyophilization on Light Transmission of Amniotic Membrane: A Comparison with Rabbit Cornea

Background & Aims: Amniotic membrane persists for a long time after ocular transplantation (as corneal substitute) and can affect light transmission (transparency). The aim of this study was to evaluate the transparency of amniotic membrane after freeze-drying (lyophilization) and to compare the results with transparency of rabbit cornea. Methods: Transparency of rabbits’ corneas and fresh and ...

متن کامل

Effect of light and passage on cardiac glycoside production on cultured cell of Digitalis nervosa Steud & Hochst

Light is important for the production of metabolites by plant cell culture. It is therefore necessary to evaluate the light conditions with respect to exposure time. Both enhancement and inhibition have been observed depending on exposure time and species. Callus culture of D. nervosa was established and effect of light and passage on cardiac glycoside production was studied. In vitro cultures ...

متن کامل

Effect of light and passage on cardiac glycoside production on cultured cell of Digitalis nervosa Steud & Hochst

Light is important for the production of metabolites by plant cell culture. It is therefore necessary to evaluate the light conditions with respect to exposure time. Both enhancement and inhibition have been observed depending on exposure time and species. Callus culture of D. nervosa was established and effect of light and passage on cardiac glycoside production was studied. In vitro cultures ...

متن کامل

The generation of singlet oxygen (o(2)) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis.

The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011